When Does a Paper Clip Become a Sundial? Exploring the Progression of Originality in the Alternative Uses Test

B. Kudrowitz* and C. Dippo

College of Design, University of Minnesota, Minneapolis, USA

Abstract The Alternative Uses Test is a measure of divergent thinking in which participants are asked to list non-obvious uses for a common object in a fixed amount of time. The goals of this study were to better understand this creativity test, explore how original ideas emerge, and provide suggestions for improvement to the test. Participants were asked to list alternative uses for a paperclip in three minutes. 293 participants, including engineers, designers and students, were tested and evaluated. Using infrequency of responses as a measure of originality, it was found that participants that produced more responses had more original responses. Later responses were significantly more original than early responses and originality of responses increased with quantity. On average, a participant would list 9 responses before arriving at highly original responses. Participants that did not reach 9 responses in the study were likely to have few if any highly original responses. Participants that were more elaborate in their responses had fewer responses in total and therefore fewer original responses. If this test maps to real world idea generation, it suggests that the first ideas we think of are likely to have been suggested already by others and thus not original. The results of this study can help restructure the format of the Alternative Uses Test and provide a database for a digital version of this test.

Keywords: Creativity, alternative uses, divergent thinking, originality, evaluation

1. Introduction

Creativity is increasingly becoming more important in today’s society (Nussbaum et al., 2005) and unfortunately creativity scores in the United States have consistently declined since 1990 (Bronson & Merryman, 2010). Creativity is required for engineers and designers to address problems in new ways to develop original solutions. It is the creative element that is the less common, less taught, less understood, yet more desired and influential aspect of design (Bronson & Merryman, 2010; Nussbaum, et al., 2005; Pink, 2005).

Divergent thinking has been found to be one indicator of creativity and it is also a critical part of the design process. Design problems typically do not have one correct solution and often there are many solutions for a given problem. It is important to better understand how divergent thinking is evaluated and how people make associations to get to original ideas.

The Alternative Uses is a simple, standard test of divergent thinking. In this test, participants are asked to list alternative uses for a common object in a fixed amount of time.

* Corresponding author. Email: barryk@umn.edu Tel: (+1)561-4454994.
2. Background

In 2012 researchers Runco and Jaeger developed what they call the “Standard Definition of Creativity”, which states that originality (or novelty) is the fundamental requirement and there is also a second factor, effectiveness, which often takes on different forms based on what is being evaluated. Research suggests that usefulness, feasibility etc. is important for evaluating creativity in engineering design (Shah et al., 2012), if an idea is not novel, most researchers agree it is not creative. Originality (or novelty) is the only consistent requirement for creativity and so we are focusing on that attribute in this study. Novelty, however, is relative to a person or to a culture (Boden, 1995).

Nobel laureate Linus Pauling said, “…you aren’t going to have good ideas unless you have lots of ideas (1977).” Research has supported this notion with a positive correlation between total number of ideas and total number of good ideas (Diehl & Stroebe, 1987; Paulus et al., 2011). Another study found that quantity of ideas was positively correlated with novel ideas and negatively correlated with feasible ideas (Rietzschel et al., 2006). This work is building off a prior study that found that quantity of ideas in a product brainstorming session was correlated with creativity of ideas (Kudrowitz & Wallace, 2013).

Osborn claims that the “early ideas are unlikely to be the best ideas generated during an ideation session” (1963). The first ideas we generate for a given prompt are going to be the common ideas that everyone first generates for that prompt (Johnson, 2010). The more creative ideas are ones that have been built on earlier ideas (Goldschmidt & Tatsa, 2005; Van der Lugt, 2001).

The relationship between quantity and creativity is not necessarily linear. One suggested relationship between idea quality and creativity is visualized with a curve called the ideation function (Reinig et al., 2007). The Bounded Ideation Theory (BIT) describes the ideation function as a positive s-curve; the number of creative ideas gradually increases as the problem is better understood and, as participants get exhausted, the number of additional creative ideas decreases (Reinig, et al., 2007).

The majority of experimental creativity studies are based on creativity tests as they are relatively simple to administer and the data can be analyzed objectively. A few of the well known creativity tests include the Torrance Test of Creative Thinking (TTCT) by Paul Torrance (1972), the Remote Associates Test (RAT) by Sarnoff Mednick (1962) and the Guilford’s Structure of the Intellect (SOI) divergent production tests (1956). These tests measure certain cognitive abilities that have been shown to correlate with creative thought processes such as divergent thinking. A recent study found that divergent thinking is a reliable indicator of creative potential (Runco & Acar, 2012).

The Alternative (or Unusual) Uses Test, created by J.P. Guilford in 1967 as part of his Structure of Intellect (SOI), is a simple way of evaluating divergent thinking ability or, in his own words, “spontaneous flexibility”. In this test, participants are asked to list non-obvious uses for a common object (such as a brick or a newspaper) in a fixed amount of time. The responses are evaluated on 4 components: originality/novelty (statistically uncommon when compared to responses to the overall data set), fluency (quantity), flexibility (different categories), and elaboration (amount of detail). This scoring system is the basis of scoring other creativity tests including the Torrance Test of Creative Thinking (TTCT). Guilford was the first to propose that it is possible to study and evaluate creativity of subjects using a psychometric approach with pencil and paper (Sternberg & Lubart, 1999). His tests began the usage of divergent thinking tests as the main instrument for measuring creativity (Sternberg & Lubart, 1999). The current test limits participants to listing only 6 alternative uses and is also explicit that abstract or vague uses are to be discarded (Guilford et al., 1960).

There are few resources available for scoring the Alternative Uses Test. There is one rubric available for online purchase, but it does not include data for a paperclip: http://www.mindgarden.com/products/altu.htm#ms.

Trained humans score most creativity tests, but there is recent work on computer-based scoring of creativity tests. In 2012, Ananda Kumar Palaniappan developed an online Creative Assessment System (CAS), a website that grades Torrance’s Test of Creativity based on Fluency, Flexibility and Originality. A pilot study was used to form a database of responses. As more respondent’s responses were added to the database, the percentage of occurrence of that response is recalcualted, making it dynamic. This
database was also used to create categories of responses that later helped to calculate flexibility scores. For responses that were spelled incorrectly or could not be categorized, Palaniappan manually entered the data.

In 2006, Kyung Hee Kim experimented in using software to score creativity tests (Kim, 2006). The scoring was never conducted because he found that taking creativity tests with a mouse and computer was more difficult and time consuming compared to taking the test with pencil and paper.

3. Experiment

In this study, 293 participants were asked to “list as many alternative uses for a paperclip as they can think of in three minutes.” This is slightly different from the original test that limits participants to 6 responses and suggests common object options that include: a safety pin, a pencil, and a nail (Guilford, et al., 1960). In this study, participants were not constrained to only six responses and could list as many as they like. This modification in the testing was made as prior studies have shown that more ideas produce more creative ideas (Kudrowitz & Wallace, 2013) and one purpose of the study is to understand when the original ideas emerge. A paperclip was chosen for this test because its complexity is comparable to that of the provided common object options in the original test but it will also be different to any participants that may have taken the test before. On a blank notecard, each participant wrote his or her gender, age, and responses.

In this study, 144 participants were designers/engineers at large corporations and 149 were design/engineering university students (freshman through senior). This selection included 49 males, 121 females, and 123 participants that did not provide their gender. The ages of the participants ranged from 15 to 64 with a mean age of 28.

In this study, we are using the Alternative Uses Test to find relationships between quantity of ideas and originality of ideas. We also will use this data to suggest changes to the scoring rubric for future use of this test.

4. Results

In this study, the term response will refer to each alternative use that was listed on an index card. In total there were 2999 responses from the 293 participants. A very small number of the responses were illegible and were counted for quantity but not for originality. All responses were textual and not pictorial. The median number of responses per participant was 10 and the average was 10.2 with a standard deviation of 4.6. A distribution of the quantity of responses is shown in Fig. 1.

The order in which each participant listed each response was preserved in the digitization. The only personal information recorded for each participant was their age, gender, and their industry/school affiliation. It was found that professionals, on average, came up with 10 responses per person while
students had an average of 8 responses per person. Female participants averaged 10 responses per person while male participants averaged 8 responses per person. There appears to be a low correlation (if any) between the age of the participant and the average quantity of responses using a 2nd order polynomial regression as depicted in Fig. 2.

![Fig. 2. Age of participant and average number of responses.](image)

4.1. Categorizing responses

We needed to create a means of classifying the responses in order to analyze the large quantity of information. Each response was digitized verbatim, but also a generalized \textit{keyword} was created to simplify similar responses for the same use. For example if one participant wrote “toothpick” and another wrote “remove food from between teeth” both of these responses were assigned the same keyword “tooth” as they are variations in wording of the same use. Similarly, if one participant wrote “remove dirt from fingernail” and another participant wrote “remove dirt from toenail”, both would be classified under “fingernail” because they both involve removing dirt from nails. Homonyms required more specific keywords. For example, “fingernail” was not simplified to “nail” as “nail” was used categorize responses referring to tacking paper to a wall. Keywords were also kept as short as possible and were meant to be obvious to the authors. For example, the word “lock” refers to the act us picking a lock with the point of a paperclip. The keywords are a means of simplifying the data but also grouping ideas that are the same but written differently. From the current sample of 2999 responses we have found 214 unique keywords, which represent 214 unique uses for a paperclip. The authors determined these keywords based on their best assessment of the intended use. Some responses belonged to obvious keywords but others required more discussion. A future scorebook would contain more details on assigning these keywords.

Further classification of the keywords could be performed in infinite manners. Responses could be organized by genres such as violent uses, bodily uses, environmental uses, \textit{etc.} However given that the essence of the creativity test is in finding new functionality of an object, the authors based further classification of the keywords into abstracted generalized \textit{function} of the object. For example responses that had the keyword “tooth” or “fingernail” are both variations of “removing material from small spaces.” This classification could also be called “removing material from small body cavities” but that would simply be a subcategory of the generalized function of “removing material from small spaces”.

Other examples of generalized functions are “holding items together,” “making shapes,” and “puncturing through something.” These categories represent the abstracted primary purpose of the idea. One can see how a generalized function can encompass many keywords and thus responses. From the
current sample, we have found 80 unique generalized functions. These generalized functions map to the “flexibility” category for evaluating the test; and so responses that are within one generalized function would not show good flexibility in thinking. This process was perhaps more subjective than other steps in the study, however the ultimate purpose of this classification is to determine a flexibility score for each participant and flexibility could be measured using a variety of different classifications.

The generalized functions were then further classified into paperclip treatments. This is the manner in which the properties of a paperclip are manipulated to accomplish the generalized function. For example in the generalized functions of “removing material from small spaces” and “puncturing through something,” the paperclip is used as a “pick” where the coil is bent out to expose a sharp point. For the generalized function of “holding items together,” the paperclip is used as a “clip.” For the generalized function of “linking items together” the paperclip is used as a “loop.” From this sample, we have found 8 unique paperclip treatments (clip, loop, pick, flexible wire, straight rod, flat token, material property, abstract/artifact/symbol) as shown in Fig. 3. This classification is based solely on the implied physical manipulation of the paperclip. Although there may be other ways of manipulating the object, this is a high level of classification of all the responses from this study. The category of “abstract” represents uses that are not physical in nature and relate to the abstract idea of an item such as: “trade it,” “make it into a mascot” and “talk about it.”

As originality or novelty is relative, percent occurrence from a pool of responses is an objective means of capturing originality from a set of responses. Once we documented the responses and keywords, we were able to determine the frequency (and infrequency) of each keyword. We counted the number of times each keyword was used as well as the percentage of participants that gave each keyword. The percent of occurrence for a specific keyword equals the number of participants that responded with that specific keyword divided by the total number of participants. In this study we were solely looking at originality, as it is a good predictor of creativity (Runco & Jaegar, 2012), however, responses that did not make sense in the context or were illegible were omitted.

A response that was deemed original would have a low percent of occurrence in the participant pool. For example “test a cake for doneness” had approximately 1% occurrence. Oppositely, an unoriginal response would have a high percent of occurrence. For example “hold paper together” was the most common response with a 77% occurrence. Figure 4 shows the most common keyword responses which are those given by over 10% of the participants in this study. Appendix A elaborates on the definition of each of these most common keywords.
The Most Common Keyword Responses
(given by over 10% of participants)

Figure 4 extends outward off the graph with a very long tail representing over 214 different alternative uses for a paperclip, but the graph is cut off at 10% occurrence. The long tail refers to the large number of uses/responses that are only mentioned by a few or one of the participants. Similar to design problems, a divergent thinking test has many appropriate solutions. The extent of the long tail was not included in the graphs of Figures 4 and 5, as it would not fit on the page while remaining legible. Additionally, the information that is of most use to people conducting this alternative uses test is the ideas that are most common. These common ideas would be listed in the scoring rubric similar to the way the Torrance Test of Creative Thinking rubric lists the top most common responses for each test.

When grouping the responses into generalized function, we can create a similar visualization for the most common generalized function by percentage of responses. Figure 5 would also continue outward with a long tail representing 80 unique generalized functions. The functions shown in the graph are those that encompass more than 1% of the responses.
Finally, we can visualize the percentage of the total responses using the high order of classification, clip treatment. As shown in Fig. 6, the most common treatments for the paperclip were as a pick, a clip, a flexible wire, and a loop. These four treatments represent 86% of all responses. Abstract responses were the least common in this study and made up less than 1%. If originality were based on rarity, the abstract responses would be the most original. The 8 participants in this study that listed an abstract response had on average 14.5 responses in total, which is 42% more than the overall average for this study.

![Clip Treatment vs. Percentage of Responses](image)

Fig. 6. Comparing the occurrence of the 8 treatments.

4.2. Quantity and originality

As the primary purpose of this study is to understand how and when the original ideas emerge in a creativity test, figures were produced to visualize the relationships between quantity of responses and originality of responses. Figure 7 and Figure 8 below show that participants that listed more responses had a lower average percent occurrence for their responses and thus more original responses. An average percent occurrence of .1 means that on average 10% of the sample population also thought of the same ideas, making it a relatively original idea. In Figure 7, each point represents a different participant and the average percent occurrence (originality) for all their ideas. Figure 8 is a condensed version of Figure 7 and essentially shows the average originality scores of each group of participants that listed the same number of responses.
Figure 8 shows that the participants that listed 6 or less responses had greater than a 25% average percent occurrence for all of their ideas whereas participants that listed more ideas had a lower average percent occurrence (more original ideas). To explore this further, we wanted to see if the later individual responses were more original than the former. By recording the order in which participants wrote down responses, we averaged the occurrence percentage for all responses written first, second, third, etc.
As shown in Fig. 9, the average occurrence percentage for the responses that were listed first was 47%. This means that if you took this test, it is likely that about half the participants taking the test will have also written down whatever response you wrote first. Furthermore, for a given participant, later responses were significantly more original than early responses and unoriginality of responses decreased with quantity. The power trend line, $y = 0.4x^{0.5}$, is a least squares fit of this data ($R^2 = 0.94$).

On average, a participant would list 9 responses before arriving at responses that were thought of by less than 10% of the participant pool. Participants that did not reach 9 responses in the study were likely to have few if any of these types of less common responses. With participants giving an average number of 10 responses in three minutes, we can see that the last responses a participant provides will have approximately a 10% occurrence percentage.
Fig. 10. Order vs. unoriginality of responses for subjects with high and low quantity of ideas.

Figure 10 shows a slightly more detailed view of the data in Figure 9. Separate graphs were overlaid for participants that wrote 10 or more responses and the participants that wrote less than 10 responses. This shows that regardless of the number of ideas each participant produced, all participants wrote the most common responses first and proceeded to produce increasingly more original responses.

Another way of visualizing the data is by plotting the total number of original keywords in the sample pool as a function of the number of responses. As more ideas are generated, more original ideas are produced until a point where the number of new original ideas begins to level off. Figure 11 shows this phenomenon with varying the definition of original ideas as those that are less than a 10%, 5% and 1% occurrence.

Fig. 11. Total number of original keywords as a function of quantity of responses.

In this study, inappropriate responses were not counted towards originality scores. These responses are ones that were not obviously related to the paperclip theme. Nonsensical answers like “refrigerator” and “sun” were deemed inappropriate. If these specific participants wrote “clip things to a refrigerator” or “bend into a sun shape” these responses would have counted as the use would have been clear.

4.3. Flexibility

The evaluation of flexibility refers to the number of higher order categories of response. Ideas that are all within the same classification are considered a more focused and therefore less flexible set of responses. The Torrance Test of Creative Thinking includes a test involving transforming a series of triangles into different objects and the flexibility evaluation is based on the manner in which the triangle is manipulated into the object. For this study flexibility was evaluated in a similar manner to the Torrance Test by classifying ideas into how the paperclip was physically manipulated. Flexibility could refer to the number of different generalized functions in the set such as “holding items together” or “making shapes.” It could also refer to the number of different clip treatments in the set such as “loop” or “pick.” The following two graphs compare average originality and quantity scores to flexibility as measured by the count of clip treatments. In Figures 12 and 13, the originality and quantity scores were averaged from all participants that fell into each flexibility score. No participants referenced all eight clip treatments. Fig. 12 shows that participants who had more original ideas were also more flexible in their uses of the clip. Similarly, Fig. 13 shows that participants who had more ideas were also more flexible.
4.4. Elaboration

Elaboration plays a role in the quantity and originality of the responses. The Alternative Uses test and the Torrance Test of Creative Thinking include an elaboration score that counts towards the overall creative assessment. In both tests, more details equate to more creative responses. In this study, the number of words per response was calculated which was then used to determine an average number of words per response per person. We then compared subjects’ quantity and originality scores to this elaboration score. Fig. 14 shows that the individuals that were more elaborate (used more words per response) had less original ideas (higher unoriginality scores). For Figures 14 and 15, the average number of words per response for each participant was rounded to the nearest whole number and the average score was taken from all participants in each whole number category. Fewer words could be related to a less clear idea, however any unclear ideas were removed before evaluation.
Similarly, Figure 15 shows that participants that were more elaborate (higher average number of words per response) had fewer responses in general.

5. Discussion

The Alternative Uses Test is only a measure of divergent thinking ability and so it may not fully represent general creativity. This test, however, is a reliable indicator of creative potential (Runco & Acar, 2012).

This data is not taking into account degree of usefulness or feasibility of the ideas, which is sometimes evaluated in other creativity tests. Appropriateness was included as criteria as described in the results section as a response that makes sense as a use for a paperclip. This criterion was included in the analysis to prevent nonsensical responses from counting as original. In this study, we use the term “original ideas” as opposed to “creative ideas” to avoid confusion.
5.1. Quantity vs. originality

Using percentage of occurrence as measure of originality, it was found that participants that produced more responses had more original responses and a higher average originality score. As shown in Fig. 9, we found that the unoriginality of ideas decreases at a rate of $x^{1/2}$ ($r^2 = .94$). Another way of saying this is that as the quantity of ideas goes up, the originality of those ideas goes up approaching a limit. Participants listed approximately nine ideas before arriving at ideas thought of by less than 10% of the participant group. In other words, for someone taking this test that listed 10 alternative uses, only 10% of the participant population will have also thought of their 10th response. If this test maps to real world creative challenges or brainstorming, it suggests that the first few ideas we think of are likely to have been suggested already by others and thus not original. To get more original solutions, one must push past and build upon the ideas generated first to arrive at the less obvious ideas and associations. In this specific test, nine ideas marks the limit before the ideas begin to be highly original. Future studies should explore if this number applies to other problems and prompts. In this study no additional creative triggers or stimuli were provide to the participants.

We can also view this data in terms of the Bounded Ideation Theory through plotting the total number of original responses as a function of quantity of responses (shown in Fig. 11). The S-curve is somewhat visible when using a 10% occurrence as the definition of an original idea. This graph shows that the number of good ideas increase as participants have more time to understand the problem/prompt. As more ideas are produced, cognitive overload and physical exhaustion begin to take effect and number of new original ideas begins to decline (Reinig, et al., 2007). This results in the leveling off of the number of original ideas. The data supports the Bounded Ideation Theory (BIT) in which the number of good ideas gradually increases as the problem is better understood and, as participants get exhausted, the number of additional good ideas decreases.

5.2. Future improvements

One goal of this research was to develop a scoring system for future Alternative Uses Tests as well as updating the current scoring rubric. There are some improvements that could be made to the Alternative Uses Test. The current test limits participants to 6 alternative use responses. This study shows that highly original ideas are not thought of until after the 9th response. An updated test should not limit the amount of uses and should allow subjects to list as many uses as they can in the given time. However a follow up study would be needed to directly compare the original 6-line test to the unlimited-line test. It is possible that participants taking the 6-line test are self-editing in their mind and thus listing only the best few ideas. The current scoring rubric omits any “abstract” ideas from receiving points. This study found that the abstract ideas (trade it, sell it, etc.) are often the most original and so an updated scoring rubric would allow these responses to be counted.

5.3. Flexibility

Figures 12 and 13 show that participants who were more flexible (finding uses for the clip in a variety of different categories) on average had more ideas as well as more original ideas. Clip treatment was used to determine flexibility in these graphs. This suggests that shifting perspective on a topic or problem might be a way of generating more ideas and more original ideas.

5.4. Elaboration

Figures 14 and 15 show that participants who elaborate (are more wordy) spend more time on each response, produce less responses in total and are less likely to get to the original ideas. The participants who averaged 5+ words per response were unlikely to produce more than 8 ideas. Currently elaboration counts as a component of creativity in these tests and is encouraged, but it may actually impede the creative process by not allowing subjects to produce a large quantity of ideas. This issue could be
overcome in a testing situation by eliminating a time restraint however this would go against the intended measure of “spontaneous flexibility.” Another option would be explicitly asking for brief responses.

The four areas that are evaluated in the Alternative Uses Test are quantity, originality, flexibility and elaboration. From this study we found that quantity, originality, and flexibility have a strong positive correlation with each other. Elaboration has a strong negative correlation with quantity and originality. There was a moderate negative correlation between flexibility and elaboration.

5.5. Database

From this study, we developed a database of the most common keywords (responses), the most common general categories and higher order categories of the paperclip prompt. These databases can be used to measure originality and flexibility which are two of the four metrics used to evaluate the Alternative Uses Test. The other two metrics fluency (quantity) and elaboration (detail) do not require a database for scoring.

The raw data from this study needs to be refined into a designed scoring booklet. This test can also be converted into a digital format, which would allow for real time scoring. As participants enter responses the software could determine which keyword is most appropriate from a database. However, nonsense responses or responses that are not in the database will require review. Using the Creative Assessment System as a basis for a computer scoring system (Palaniappan, 2012), an additional component could be added that tracks the order in which responses are given. An algorithm could be generated to predict what responses a participant will think of given the ideas already suggested. This would create a virtual collective mind map, which can be used to visualize the way people make connections and how original ideas evolve from a common starting point.

6. Conclusion

The Alternative Uses Test is a standard test of divergent thinking. Using infrequency of responses as a measure of originality, it was found that participants that produced more responses had more original responses and a higher average originality score. Furthermore, for a given participant, later responses were significantly more original than early responses and unoriginality of responses decreased with quantity at a rate of x-1/2 ($r^2=.94$). On average, a participant would list 9 responses before arriving at highly original responses (thought of by <10% of the participant pool). The data supports the Bounded Ideation Theory in which the number of original ideas increases at the beginning of idea generation and then level off as participants become fatigued. Participants who were more elaborate in their responses (using more words per response) had fewer responses in total and thus less original responses. Participants that showed more flexibility in responses, thinking of ideas from a variety of domains, had more responses in general and more original responses.

Applying these findings to idea generation, perhaps in a brainstorming session, participants should keep the description of ideas short so they can spend more time on quantity of ideas. Perhaps idea generation sessions could begin with a list of categories or themes to force variety/flexibility upon the participants. Participants in a brainstorming session could be required to think of at least 9 ideas individually prior to the team gathering to ensure that all new ideas will be in the long tail of originality.

References

Author Biographies

Barry Kudrowitz is an assistant professor and director of product design at the University of Minnesota. He received his PhD from the Mechanical Engineering Department at the Massachusetts Institute of Technology (MIT), studying humor, creativity, and idea generation. Kudrowitz co-designed a Nerf toy, an elevator simulator for the International Spy Museum in Washington, D.C., an Oreo separating machine, and a ketchup-dispensing robot that was featured on the Martha Stewart Show. He teaches several design classes including Toy Product Design in which students work with children and industry to take their own toy ideas from concept to functional prototype.

Caitlin Dippo is an undergraduate student at the University of Minnesota and will graduate in 2015 with a bachelor of design in architecture and minors in both product design and design thinking. She studies creativity tests.
Appendix A – Elaboration of the Most Common Keywords

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>To hold pieces of paper together</td>
</tr>
<tr>
<td>Lock</td>
<td>To pick a lock open</td>
</tr>
<tr>
<td>Hair</td>
<td>To hold hair in place</td>
</tr>
<tr>
<td>Earring</td>
<td>To un-bend and wear as an earring</td>
</tr>
<tr>
<td>Necklace</td>
<td>To link together and make a necklace</td>
</tr>
<tr>
<td>Chain</td>
<td>To link together and make a chain</td>
</tr>
<tr>
<td>Tooth</td>
<td>To pick food out of teeth</td>
</tr>
<tr>
<td>Hanger</td>
<td>To hang clothes up</td>
</tr>
<tr>
<td>Keys</td>
<td>To loop keys together</td>
</tr>
<tr>
<td>Jewelry</td>
<td>To link together as jewelry (generic)</td>
</tr>
<tr>
<td>Ring</td>
<td>To bend around finger as a ring</td>
</tr>
<tr>
<td>Flag</td>
<td>To mark a place on page or in book</td>
</tr>
<tr>
<td>Clothes</td>
<td>To hold pieces of clothing together</td>
</tr>
<tr>
<td>Hole</td>
<td>To poke a hole</td>
</tr>
<tr>
<td>Sculpture</td>
<td>To bend into a non-functional object/artwork</td>
</tr>
<tr>
<td>Bracelet</td>
<td>To link together to make a bracelet</td>
</tr>
<tr>
<td>Hook</td>
<td>To unbend and hold another item</td>
</tr>
<tr>
<td>Fingernail</td>
<td>To clean underneath finger and toe nails</td>
</tr>
<tr>
<td>Glasses</td>
<td>To hold eye glasses together on face</td>
</tr>
<tr>
<td>Button</td>
<td>To fasten articles of clothing together</td>
</tr>
<tr>
<td>Decoration</td>
<td>To be added to something or displayed as flair</td>
</tr>
<tr>
<td>Clean</td>
<td>To remove dirt from small spaces</td>
</tr>
<tr>
<td>Conduct</td>
<td>To conduct an electrical current</td>
</tr>
<tr>
<td>Reset</td>
<td>To push small reset buttons</td>
</tr>
<tr>
<td>Unclog</td>
<td>To unclog holes</td>
</tr>
<tr>
<td>Weapon</td>
<td>To hurt someone</td>
</tr>
</tbody>
</table>